Services
- Development of Marine Resources
- Development of Marine Algae Resources
- Seaweed Extraction
- Seaweed (Macroalgae) Analysis
- Algae (Microalgae) Analysis
- Algae Identification
- Algae Production
- Algae Culture
- Algae Harvesting and Separation
- Algal Biodiversity Assessment
- Purification of Algal Extracts
- Algae Database Construction
- Microalgal Fermentation
- Haematococcus Pluvialis Production
- Nannochloropsis Production
- Phaeodactylum Tricornutum Production
- Chlorella Vulgaris Production
- Spirulina Production
- Porphyridium Cruentum Production
- Development of Seaweed Enzyme Products
- Diatom Production
- Agar Production
- Carrageenan Production
- Development of Marine Biofertilizer
- Seaweed Fertilizer Production
- Marine Bio-Calcium Fertilizer Production
- Marine Fish Protein Liquid Bio-fertilizer Production
- Organic Kelp Fertilizer Production
- Seagrass Organic Compost Production
- Microalgal Fertilizer Production
- Jellyfish Fertilizer Production
- Marine Microbial Fertilizer Production
- Chitosan Fertilizer Production
- Oligochitosan Fertilizer Production
- Chitin Fertilizer Production
- Composition Analysis of Marine Biofertilizer
- Quality Testing of Marine Biofertilizer
- Screening of Microbes for Marine Biofertilizer
- Development of Alginate
- Development of New Marine Proteins
- Marine Halophilic Enzyme Production
- Marine Microbial Lysozyme Production
- Marine Agarase Production
- Marine Cold-active Enzymes Production
- Marine Carrageenase Production
- Marine Xylanase Production
- Marine Chitinase Production
- Marine Collagenases Production
- Porifera Peptides Synthesis
- Cnidaria Peptide Synthesis
- Mollusca Peptide Synthesis
- Annelida Peptide Synthesis
- Arthropoda Peptide Synthesis
- Echinodermata Peptide Synthesis
- Chordata Peptide Synthesis
- Development of Marine Biotoxin
- Isolation of Marine Peptide Toxins
- Purification and Characterization of Marine Peptide Toxins
- Isolation of Marine Polyether Toxins
- Isolation of Marine Alkaloid Toxins
- Identification and Quantification of Marine Polyether Toxins
- Detection of Marine Biotoxin
- Immunoassay Testing of Marine Polyether Toxins
- Biological Activity Evaluation of Marine Biotoxin
- Biosynthesis of Marine Biotoxin
- Risk Assessment of Marine Biotoxin
- Identification of Microcystins
- Isolation and Purification of Microcystins
- Molecular Characterization and Toxin Quantification of Microcystis
- Development of Marine Biosurfactants
- Marine Microbial Production of Lipopeptide Biosurfactant
- Marine Microbial Production of Rhamnolipid Biosurfactant
- Marine Microbial Production of Sophorolipid Biosurfactant
- Marine Microbial Production of Trehalose Lipid Biosurfactant
- Marine Microbial Production of Fatty Acid Biosurfactant
- Marine Microbial Production of Lipopolysaccharide Biosurfactant
- Marine Microbial Production of Lipoprotein Biosurfactant
- Marine Microbial Production of Lipoamino Acid Biosurfactant
- Purification of Marine Biosurfactant
- Isolation of Biosurfactant Producing Marine Bacteria
- Process Design and Optimization for Marine Biosurfactant Production
- Critical Micelle Concentration Determination of Marine Biosurfactant
- Structural Diversity Analysis of Marine Biosurfactant
- Characterization of Marine Biosurfactant
- Quantification of Marine Biosurfactant
- Qualitative Analysis of Marine Biosurfactant
- Surface Tension Measurement of Marine Biosurfactant
- Antimicrobial Testing of Marine Biosurfactant
- Anti-adhesive Testing of Marine Biosurfactant
- Development of Marine Unsaturated Fatty Acid
- Bioactivity Assays of Marine Unsaturated Fatty Acid
- Chemical Structures Analysis of Marine Unsaturated Fatty Acid
- Marine Polyunsaturated Fatty Acid Biosynthesis from Yarrowia Lipolytica
- Fermentation of Marine Microalgae to Produce EPA/DHA
- Screening of Marine Yeasts to Produce Unsaturated Fatty Acids
- Unsaturated Fatty Acids Biosynthesis from Thraustochytrium
- Unsaturated Fatty Acids Biosynthesis from Schizochytrium
- Development of Marine Biochips
- Development of Marine-Based Biomaterial
- Development of Marine Polysaccharides
- Development of Brown Seaweed Polysaccharides
- Development of Red Seaweed Polysaccharides
- Development of Green Seaweed Polysaccharides
- Structural Analysis of Marine Polysaccharides
- Modification of Marine Polysaccharides
- Physicochemical Properties Analysis of Marine Polysaccharides
- Separation and Purification of Marine Polysaccharides
- Development of Marine Oligosaccharides
- Development of Marine Microbial Polysaccharides
- Development of Marine Microbial Pesticide
- Development of Marine Algae Resources
- Analysis of Marine Organisms
- Analysis of Marine Microorganisms
- Identification and Detection of Marine Microorganisms
- Isolation and Cultivation of Marine Microorganisms
- Characterization of Marine Microorganisms
- Identification of Marine Bacteria
- Physiological Characteristic Analysis of Marine Microorganisms
- Identification of Marine Virus
- Marine Microbial Community Profiling
- Identification of Marine Archaea
- Quantitative Analysis of Marine Microbiome Community
- Identification of Marine Yeast
- Sequencing of Marine Microbial Community
- Identification of Marine Eukaryotic Microorganisms
- Fermentation of Marine Microorganisms
- Marine Microbial Limits Testing
- Analysis of Marine Microbial Diversity
- Databases Construction of the Marine Metagenomics
- Marine Microbial Bioburden Testing
- Marine Microbial Stability Testing
- Marine Microbial Viability Testing
- Sampling of Marine Microorganism
- Preservation Service of Marine Microorganism
- Breeding of Marine Microorganisms
- Analysis of Marine Plankton
- Analysis of Marine Plants
- Chlorophyll Detection of Algae
- Detection of Phycocyanin Concentration
- Growth Inhibition Test of Freshwater Algae
- Sediment-free Myriophyllum Spicatum Toxicity Test
- Water-sediment Myriophyllum Spicatum Toxicity Test
- Water-sediment Glyceria Maxima Toxicity Test
- Efficacy Test of Algicides
- Analysis of Phytoplankton Pigment
- Identification and Sampling of Zooplankton
- Ultra-microplankton Detection
- Microplankton Detection
- Determination of Trace Elements in Plankton
- Macrobenthos Analysis
- Plankton Image Analysis
- Plankton Sorting
- Analysis of Marine Microorganisms
- Development of Marine Drug
- Development of Marine Antibacterial Drug
- Development of Marine Anticancer Drug
- Development of Marine Anti-inflammatory Drug
- Development of Marine Antioxidant
- Development of Marine Antiviral Drug
- Development of Marine Neuroprotective Drug
- Development of Marine Antiparasitic Drug
- Development of Marine Analgesic Drug
- Development of Marine Cardiovascular Drug
- Development of Marine Antimicrobial Drug
- Development of Marine Antimalarial Drug
- Development of Marine Anticoagulant Drug
- Development of Marine Antihyperlipidemic Drug
- Development of Marine Antidiabetic Drug
- Development of Anti-tubercular Drug
- Development of Marine Antiprotozoal Drug
- Marine Organism Cell Culture
- Development of Marine Organism Model
- Marine Biological Test
- Fish Embryo Acute Test
- Fish Early Life Stage Toxicity Test
- Fish Sexual Development Test
- Fish Juvenile Growth Study
- Fish Egg Test
- Fish Short Term Reproduction Assay
- Amphibian Metamorphosis Assay
- Lemna Growth Inhibition Test
- Fish Acute Toxicity Test
- Fish Chronic Toxicity Test
- Endocrine Disruption Testing
- Daphnia Magna Reproduction Test
- Daphnia sp., Acute Immobilisation Test
- Potamopyrgus Antipodarum Reproduction Test
- Lymnaea Stagnalis Reproduction Test
- Fish Life Cycle Toxicity Test
Looking for something specific?
Search within Our Comprehensive Services
Marine Organism Cell Culture
The large-scale cultivation of animal cells is one of the important contents of biotechnology. Because artificially cultured animal cells can be used to isolate and identify viruses, produce vaccines and drugs. Cell culture research of marine organisms is later than that of land animals. Cells from marine animals can also be used to produce therapeutic drugs. It has been found that many marine animals can synthesize anticancer, antiviral and anticardiovascular drugs. For example, anticancer substances have been found in gorgonians, soft corals, bryozoans, sea hares, sea squirts, and broad-spectrum antibiotics in gorgonians and sponges. If it is possible to identify which types of cells in these animals are capable of synthesizing drugs, it may be possible to produce them in cell culture. Cultivating animal immune cells is an important means to study animal immune function and screen immune enhancing drugs. Cultivating cancer cells in fish is a way to study the mechanism of cancer tumorigenesis.
Our Services
With a strong team of more than 100 dedicated and skilled scientists and technicians, CD BioSciences provides state-of-the-art cell culture development services.
Sponge Cell Culture
Sponge cells are very suitable for the study of animal cell signal transduction, the research on the in vitro culture of sponge cells is also of high value in basic biological research. CD BioSciences provides sponge cell services based on our advanced technology platform and a range of capabilities.
Fish Cell Culture
Fish-derived cell lines have been established as promising tools for studying many critical issues in aquaculture, including fish growth, disease, reproduction, genetics, and biotechnology. CD BioSciences simplifies your research with a reliable supply of fish cells for your experiments and high-throughput screening work.
Cnidaria Cell Culture
The coelenterate phylum includes corals, sea anemones, and hydra, etc. It is a true two-germ layer multicellular metazoa, with tissue differentiation, but a simple structure. We provide technical expertise and dedicated facilities for testing methods in a variety of cell-based assays and functional screening. We are always ready to operate with specific client agreements and settings.
Annelida Cell Culture
Due to CD BioSciences' state-of-the-art equipment, and our expertise in cell culture solutions, CD BioSciences is a leader in the supply of primary cells. We can also provide earthworm cell cultures through partnerships with a number of research institutions.
Crustacean Cell Culture
Crustacean cell culture is gaining attention as an effective model to assist in the development of diagnostic reagents and probes for the shrimp, crayfish and lobster industries. CD BioSciences' laboratories works closely with your team and we can provide highly qualified CD BioSciences' personnel to take responsibility for your project.
Molluscan Cell Culture
Mollusk cells cultured in vitro are invaluable research tools and have made significant contributions to many disciplines including neurobiology, immunology, toxicology, environmental science, functional genomics, and more. CD BioSciences is a leader in the supply of molluscan cell culture.
Echinodermata Cell Culture
Echinoderms include sea urchins, sea stars, sea cucumbers, sea snakes, and crinoids. We provide technical expertise and dedicated facilities for important research models based on Echinodermata cell.
Marine Animal Stem Cell Culture
CD BioSciences, as a leading company specializing in marine cell research, is committed to providing the most valuable methods for the isolation, culture and differentiation of stem cells. We offer a broad range of solutions for proliferation, characterization, differentiation, characterization and screening.
Our Cell Culture Technologies
- In vitro culture technique
Cell culture technology is a basic biological technology. The in vitro culture we provide includes cell culture, tissue culture, organ culture, etc. - Nuclear transfer technique
The technical route of our nuclear transfer generally includes several links such as selection of recipient cells, acquisition of donor nuclei, establishment and activation of reconstructed embryos, and implantation into the mother. - Gene transduction technology
Our commonly used transformation methods include physical and chemical transformation methods (electroporation, DNA microinjection, liposome embedding, etc.), virus transfection, and engineering embryonic stem cell methods.
CD BioSciences is a professional service provider for the marine biology industry. Our marine organism cell culture services can ensure that the most suitable methods and techniques are selected for your project. We provide our customers with the most precise ingredient data and highly informed process expertise. Our team of biomass experts plays a key role in the formulation, optimization and commercial evaluation of biomass value-added processes in industry and academia. If necessary, please feel free to contact us.
Please kindly note that our services can only be used to support research purposes (Not for clinical use).