Services
- Development of Marine Resources
- Development of Marine Algae Resources
- Seaweed Extraction
- Seaweed (Macroalgae) Analysis
- Algae (Microalgae) Analysis
- Algae Identification
- Algae Production
- Algae Culture
- Algae Harvesting and Separation
- Algal Biodiversity Assessment
- Purification of Algal Extracts
- Algae Database Construction
- Microalgal Fermentation
- Haematococcus Pluvialis Production
- Nannochloropsis Production
- Phaeodactylum Tricornutum Production
- Chlorella Vulgaris Production
- Spirulina Production
- Porphyridium Cruentum Production
- Development of Seaweed Enzyme Products
- Diatom Production
- Agar Production
- Carrageenan Production
- Development of Marine Biofertilizer
- Seaweed Fertilizer Production
- Marine Bio-Calcium Fertilizer Production
- Marine Fish Protein Liquid Bio-fertilizer Production
- Organic Kelp Fertilizer Production
- Seagrass Organic Compost Production
- Microalgal Fertilizer Production
- Jellyfish Fertilizer Production
- Marine Microbial Fertilizer Production
- Chitosan Fertilizer Production
- Oligochitosan Fertilizer Production
- Chitin Fertilizer Production
- Composition Analysis of Marine Biofertilizer
- Quality Testing of Marine Biofertilizer
- Screening of Microbes for Marine Biofertilizer
- Development of Alginate
- Development of New Marine Proteins
- Marine Halophilic Enzyme Production
- Marine Microbial Lysozyme Production
- Marine Agarase Production
- Marine Cold-active Enzymes Production
- Marine Carrageenase Production
- Marine Xylanase Production
- Marine Chitinase Production
- Marine Collagenases Production
- Porifera Peptides Synthesis
- Cnidaria Peptide Synthesis
- Mollusca Peptide Synthesis
- Annelida Peptide Synthesis
- Arthropoda Peptide Synthesis
- Echinodermata Peptide Synthesis
- Chordata Peptide Synthesis
- Development of Marine Biotoxin
- Isolation of Marine Peptide Toxins
- Purification and Characterization of Marine Peptide Toxins
- Isolation of Marine Polyether Toxins
- Isolation of Marine Alkaloid Toxins
- Identification and Quantification of Marine Polyether Toxins
- Detection of Marine Biotoxin
- Immunoassay Testing of Marine Polyether Toxins
- Biological Activity Evaluation of Marine Biotoxin
- Biosynthesis of Marine Biotoxin
- Risk Assessment of Marine Biotoxin
- Identification of Microcystins
- Isolation and Purification of Microcystins
- Molecular Characterization and Toxin Quantification of Microcystis
- Development of Marine Biosurfactants
- Marine Microbial Production of Lipopeptide Biosurfactant
- Marine Microbial Production of Rhamnolipid Biosurfactant
- Marine Microbial Production of Sophorolipid Biosurfactant
- Marine Microbial Production of Trehalose Lipid Biosurfactant
- Marine Microbial Production of Fatty Acid Biosurfactant
- Marine Microbial Production of Lipopolysaccharide Biosurfactant
- Marine Microbial Production of Lipoprotein Biosurfactant
- Marine Microbial Production of Lipoamino Acid Biosurfactant
- Purification of Marine Biosurfactant
- Isolation of Biosurfactant Producing Marine Bacteria
- Process Design and Optimization for Marine Biosurfactant Production
- Critical Micelle Concentration Determination of Marine Biosurfactant
- Structural Diversity Analysis of Marine Biosurfactant
- Characterization of Marine Biosurfactant
- Quantification of Marine Biosurfactant
- Qualitative Analysis of Marine Biosurfactant
- Surface Tension Measurement of Marine Biosurfactant
- Antimicrobial Testing of Marine Biosurfactant
- Anti-adhesive Testing of Marine Biosurfactant
- Development of Marine Unsaturated Fatty Acid
- Bioactivity Assays of Marine Unsaturated Fatty Acid
- Chemical Structures Analysis of Marine Unsaturated Fatty Acid
- Marine Polyunsaturated Fatty Acid Biosynthesis from Yarrowia Lipolytica
- Fermentation of Marine Microalgae to Produce EPA/DHA
- Screening of Marine Yeasts to Produce Unsaturated Fatty Acids
- Unsaturated Fatty Acids Biosynthesis from Thraustochytrium
- Unsaturated Fatty Acids Biosynthesis from Schizochytrium
- Development of Marine Biochips
- Development of Marine-Based Biomaterial
- Development of Marine Polysaccharides
- Development of Brown Seaweed Polysaccharides
- Development of Red Seaweed Polysaccharides
- Development of Green Seaweed Polysaccharides
- Structural Analysis of Marine Polysaccharides
- Modification of Marine Polysaccharides
- Physicochemical Properties Analysis of Marine Polysaccharides
- Separation and Purification of Marine Polysaccharides
- Development of Marine Oligosaccharides
- Development of Marine Microbial Polysaccharides
- Development of Marine Microbial Pesticide
- Development of Marine Algae Resources
- Analysis of Marine Organisms
- Analysis of Marine Microorganisms
- Identification and Detection of Marine Microorganisms
- Isolation and Cultivation of Marine Microorganisms
- Characterization of Marine Microorganisms
- Identification of Marine Bacteria
- Physiological Characteristic Analysis of Marine Microorganisms
- Identification of Marine Virus
- Marine Microbial Community Profiling
- Identification of Marine Archaea
- Quantitative Analysis of Marine Microbiome Community
- Identification of Marine Yeast
- Sequencing of Marine Microbial Community
- Identification of Marine Eukaryotic Microorganisms
- Fermentation of Marine Microorganisms
- Marine Microbial Limits Testing
- Analysis of Marine Microbial Diversity
- Databases Construction of the Marine Metagenomics
- Marine Microbial Bioburden Testing
- Marine Microbial Stability Testing
- Marine Microbial Viability Testing
- Sampling of Marine Microorganism
- Preservation Service of Marine Microorganism
- Breeding of Marine Microorganisms
- Analysis of Marine Plankton
- Analysis of Marine Plants
- Chlorophyll Detection of Algae
- Detection of Phycocyanin Concentration
- Growth Inhibition Test of Freshwater Algae
- Sediment-free Myriophyllum Spicatum Toxicity Test
- Water-sediment Myriophyllum Spicatum Toxicity Test
- Water-sediment Glyceria Maxima Toxicity Test
- Efficacy Test of Algicides
- Analysis of Phytoplankton Pigment
- Identification and Sampling of Zooplankton
- Ultra-microplankton Detection
- Microplankton Detection
- Determination of Trace Elements in Plankton
- Macrobenthos Analysis
- Plankton Image Analysis
- Plankton Sorting
- Analysis of Marine Microorganisms
- Development of Marine Drug
- Development of Marine Antibacterial Drug
- Development of Marine Anticancer Drug
- Development of Marine Anti-inflammatory Drug
- Development of Marine Antioxidant
- Development of Marine Antiviral Drug
- Development of Marine Neuroprotective Drug
- Development of Marine Antiparasitic Drug
- Development of Marine Analgesic Drug
- Development of Marine Cardiovascular Drug
- Development of Marine Antimicrobial Drug
- Development of Marine Antimalarial Drug
- Development of Marine Anticoagulant Drug
- Development of Marine Antihyperlipidemic Drug
- Development of Marine Antidiabetic Drug
- Development of Anti-tubercular Drug
- Development of Marine Antiprotozoal Drug
- Marine Organism Cell Culture
- Development of Marine Organism Model
- Marine Biological Test
- Fish Embryo Acute Test
- Fish Early Life Stage Toxicity Test
- Fish Sexual Development Test
- Fish Juvenile Growth Study
- Fish Egg Test
- Fish Short Term Reproduction Assay
- Amphibian Metamorphosis Assay
- Lemna Growth Inhibition Test
- Fish Acute Toxicity Test
- Fish Chronic Toxicity Test
- Endocrine Disruption Testing
- Daphnia Magna Reproduction Test
- Daphnia sp., Acute Immobilisation Test
- Potamopyrgus Antipodarum Reproduction Test
- Lymnaea Stagnalis Reproduction Test
- Fish Life Cycle Toxicity Test
Looking for something specific?
Search within Our Comprehensive Services
Development of Alginate
Alginate is a natural polymer, an edible heteropolysaccharide, abundant in brown algae. Modified natural polymer materials have been used in drugs, tissue regeneration scaffolds, drug delivery, and imaging agents. Alginates have great potential in biomedical applications due to their biodegradability and biocompatibility. Especially in wound care, alginates are used as dressings and regeneration templates for acute or chronic wounds. Commercially available alginates are typically extracted from brown algae by treatment with sodium hydroxide (NaOH), followed by filtration to accelerate alginate formation. Alginates can be used in food processing. It can function as emulsifiers, curing agents, flavor enhancers, flavor enhancers, formulation, processing aids, stabilizers, surfactants, or thickeners. Alginates from different species of seaweed often differ in their chemical structure, resulting in different physical properties. During alginate development, CD BioSciences secures the source of alginate and prefers to source supplies from different geographic regions, so that if the algae in one region are affected by climatic conditions, there are alternative supplies available.
Our Services
CD BioSciences offers a range of services from contract research to business development to help manufacturers and users get the most out of their alginate.
Alginate Production
The brown seaweeds CD BioSciences offers for the production of alginate are Ascophyllum, Durvillaea, Ecklonia, Laminaria, Lessonia, Macrocystis, and Sargassum. The production process of CD BioSciences alginate is relatively simple and can be divided into two categories: the calcium alginate method and the alginic acid method.
Alginate Extraction
CD BioSciences has established a supply chain of stable procurement of high-quality seaweed, and will also provide extraction services of alginate or cooperation to customers by providing its state-of-the-art equipment, proprietary licenses, and its own expertise. The extraction methods including microwave-assisted extraction, ultrasound assisted extraction, calcium coagulation-ion exchange method and so on.
Alginate Purification
CD BioSciences has a strong technical force and strict quality control, and the services' quality is stable and reliable. CD BioSciences provides purification of not only sodium alginate, but also alginic acid and calcium, ammonium and potassium salts, and propylene glycol alginate.
Evaluation of Physicochemical Properties Alginate
At CD BioSciences, we are striving to establish original analytical techniques suitable for physicochemical properties evaluation of alginate, while fully evaluating the validity of the test methods themselves. Structural characterization of alginates can be performed using SEM, XRF, and FTIR techniques.
Chemical Modifications of Alginate
After years of rapid development, CD BioSciences has a completely professional customer service's system, matching corresponding service support solutions according to customer needs. Our chemical modification services including chemical modification service of the hydroxyl groups and chemical modification service of the carboxyl groups.
Evaluation of Alginate Biological Properties
In the process of evaluating the properties of alginates, we have established analytical techniques that can properly evaluate materials in the medical field, such as low-endotoxin alginate analysis techniques.
Alginate Characterization
CD BioSciences is committed to providing characterization services of alginate. At CD BioSciences, the alginates are purified by reprecipitation with ethanol and characterized by 1H-NMR, fluorescence spectroscopy, and infrared spectroscopy to determine their structure and physicochemical properties.
Key Features of Alginate
Alginate has some special properties: non-toxic, biocompatible, biodegradable, biostable, hydrophilic.
Applications of Alginate
- Pharmaceuticals and therapeutic clinical observation
- Delivery of drug molecules
- Protein delivery
- Wound dressings
- Cell culture
- Antibiotics development
CD BioSciences is a professional service provider for the marine biology industry. Our alginate development services can ensure that the most suitable methods and techniques are selected for your project. We provide our customers with the most precise ingredient data and highly informed process expertise. Our team of biomass experts plays a key role in the formulation, optimization and commercial evaluation of biomass value-added processes in industry and academia. If necessary, please feel free to contact us.
Please kindly note that our services can only be used to support research purposes (Not for clinical use).